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A B S T R A C T

When watching an ambiguous figure that allows for multiple interpretations, our interpretation spontaneously
switches between the possible options. Such spontaneous switching is called perceptual switching and it is
modulated by top-down selective attention. In this study, we propose a point process modeling approach for
investigating the effects of online brain activity on perceptual switching, where we define online activity as
continuous brain activity including spontaneous background and induced activities. Specifically, we modeled
perceptual switching during Necker cube perception using electroencephalography (EEG) data. Our method is
based on the framework of point process model, which is a statistical model of a series of events. We regard
perceptual switching phenomenon as a stochastic process and construct its model in a data-driven manner. We
develop a model called the online activity regression model, which enables to determine whether online brain
activity has excitatory or inhibitory effects on perceptual switching. By fitting online activity regression models
to experimental data and applying the likelihood ratio testing with correction for multiple comparisons, we
explore the brain regions and frequency bands with significant effects on perceptual switching. The results
demonstrate that the modulation of online occipital alpha activity mediates the suppression of perceptual
switching to the non-attended interpretation. Thus, our method provides a dynamic description of the
attentional process by naturally accounting for the entire time course of brain activity, which is difficult to
resolve by focusing only on the brain activity around the time of perceptual switching.

1. Introduction

When watching an ambiguous figure that allows for multiple
interpretations, our interpretation spontaneously switches among the
various possible views. This phenomenon is called multistable percep-
tion and spontaneous switching is also known as perceptual switching
(Blake and Logothetis, 2002; Leopold and Logothetis, 1999; Pastukhov
et al., 2013). An example of an ambiguous figure is the Necker cube
(Fig. 1), which allows for two interpretations as a three-dimensional
object (Necker, 1832). Perceptual switching is thought to reflect the
stochastic nature of information processing in the brain (Braun and
Mattia, 2010) and many experimental studies have investigated its
underlying mechanism (Sterzer et al., 2009). These previous studies
are classified according to the use of one of the following two
approaches: bottom-up approach or top-down approach. Although
the bottom-up approach assumes that perceptual switchings passively
result from early visual processing, the top-down approach focuses on
the active decision-making process involved in multistable perception.

From the latter viewpoint, multistable perception is expected to be
affected by attention. Indeed, similar to other visual phenomena
(Reynolds and Chelazzi, 2004; Yamagishi et al., 2003), multistable
perception is modulated by selective attention (Meng and Tong, 2004)
such that the duration of the attended interpretation increases when an
observer intentionally focuses on one interpretation of an ambiguous
figure. Thus, switching to the attended interpretation is facilitated by
selective attention, whereas switching to the non-attended interpreta-
tion is suppressed by it.

Previous experimental studies on multistable perception have
mainly focused on the brain activity around the time of perceptual
switching such as evoked and induced activity, e.g., alpha activity was
found to decrease around the time of perceptual switching (Isoglu-
Alkac et al., 2000; Isoglu-Alkac and Struber, 2006; Struber and
Herrmann, 2002). In contrast, consideration of the entire time course
of brain activity is important for understanding selective attention in
multistable perception because attentional facilitation and suppression
of perceptual switching are continuous processes rather than instanta-
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neous events. We define online activity as this continuous brain
activity that includes spontaneous background and induced activities.
Therefore, we are interested in the dynamic relationship between
online brain activity and perceptual switching. In the present study,
we develop a data analysis method that is suitable for this purpose.

Many neuroimaging studies suggest that oscillatory activity such as
alpha and gamma are crucial for sensory processing (Engel et al.,
2001). In previous studies on multistable perception, the alpha activity
has been mainly associated with bottom-up processing (Ehm et al.,
2011; Isoglu-Alkac et al., 2000; Isoglu-Alkac and Struber, 2006;
Mathes et al., 2010; Struber and Herrmann, 2002) whereas the beta
(Hipp et al., 2011) and gamma activities (Basar-Eroglu et al., 1996;
Ehm et al., 2011; Mathes et al., 2006; Nakatani and van Leeuwen,
2006; Struber et al., 2000, 2001) have been associated with top-down
processing. However, few studies have evaluated the interaction
between top-down and bottom-up processes. We note that the mod-
ulation of online alpha activity has been found to be associated with
visual attention. For example, the visual discrimination ability de-
creases as the prestimulus alpha power increases (Hanslmayr et al.,
2007; van Dijk et al., 2008). In addition, when covert visual attention is
directed to the left or right of the visual field, online occipital alpha
activity is suppressed in the hemisphere contralateral to the attended
side (Kajihara et al., 2015; Thut et al., 2006; Worden et al., 2000). We
investigate whether attentional control over perceptual switching is
also mediated by the modulation of online alpha activity.

To explore the relationship between perceptual switching and
online brain activity, we employ a statistical modeling approach that
regard the perceptual switching phenomenon as a stochastic process
and we construct a model of perceptual switching in a data-driven
manner. Perceptual switching can be represented as a series of events
on the time axis (Fig. 4A). In statistics and probability theory, a series
of events over time can be described as a point process (Daley and
Vere-Jones, 2003), which is a type of stochastic process. Point process
models are widely used for the analysis of phenomena such as neuronal
firings (Truccolo et al., 2005) and earthquakes (Ogata, 1999). In point
process models, the probability of an event occurring is described by a
function called the intensity. In this study, we model perceptual
switching using an online activity regression model, which describes
a point process in which the intensity depends on online brain activity.

By fitting online activity regression models to experimental data, our
method reveals whether online brain activity has excitatory or inhibi-
tory effects on perceptual switching.

Using online activity regression models, we analyze experimental
data collected from participants while they viewed the Necker cube.
Based on the likelihood ratio testing with correction for multiple
comparisons, we explore the cortical regions and frequency bands that
are associated with attentional control during multistable perception.
The results demonstrate that online occipital alpha activity suppresses
perceptual switchings to the non-attended interpretation. Thus, our
point process modeling approach provides a framework for investigat-
ing the relationship between cognitive events and online brain activity.

2. Material and methods

2.1. Experimental settings

We use the experimental data regarding selective attention in
multistable perception from Shimaoka et al. (2010), who focused on
the phase-synchrony across distant cortical areas and found that
phase-locked clusters transiently merge together around the time of
perceptual switching with a stronger connection in the switch to the
attended interpretation. Thus, they did not consider online brain
activity. In the present study, we reanalyze their data to investigate
the relationship between online brain activity and perceptual switching
with a particular emphasis on selective attention.

2.1.1. Participants and visual stimuli
Sixteen right-handed adult volunteers with normal or corrected-to-

normal vision (mean age, 24.7 years; SD, 4.7 years; seven females)
participated in the study after providing informed consent. The study
was approved by the ethics committee at RIKEN (Saitama, Japan).
Participants were seated in a dark room at 95 cm from a 19-in. CRT
monitor (100 Hz refresh rate), and presented with a gray Necker cube
(width and height=4.2° in visual angle) on a black background in the
center of the monitor (see Fig. 1) in time blocks of 180 s. The
participants were instructed to focus on a gray fixation cross (width
and height=0.4° in visual angle) displayed in the center of the cube and
to avoid making eye movements or blinks. Throughout the experiment,
the head position of each participant was maintained by a chin rest.
Participants were instructed to depress a specific keyboard key with
their right index finger while they perceived the “top view” (i.e., as if
seen from above), and to depress another key with their right middle
finger while they perceived the “bottom view” (i.e., as if seen from
below). When the Necker cube was perceived as intermediate or flat,
the participants made no response. Four experimental conditions and
instructions were given to each participant, as follows:

• Neutral view condition; “Just look at the cube passively.”

• Top view biasing condition; “Attempt to perceive the cube from the
top view for as long as possible.”

• Bottom view biasing condition; “Attempt to perceive the cube from
the bottom view for as long as possible.”

• Self-paced key pressing condition without the Necker cube; “Press
the keys at your own pace.”

Two biasing conditions were included to investigate selective
attention in multistable perception. Meng and Tong (2004) reported
that voluntary control with “maintain” instructions actually induced
top-down selective attention and that the duration of the attended
interpretation was significantly longer. The self-paced key pressing
condition was a control for motor activity.

After a 1-min practice block under each condition and a 3-min
resting block, the participants received the four conditions in a mixed
randomized order (five blocks/condition, Fig. 2). During the resting
block, the Necker cube was not presented and participants were asked

Fig. 1. (a) Necker cube presented to participants. (b) Left: top view, right: bottom view.
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to fixate on the cross. Participants were given a short break between
blocks.

2.1.2. Electroencephalography (EEG) recordings
The EEG signals were recorded from 62 electrodes, which were

placed according to the international 10-10 placement system (Fig. 3).
Horizontal and vertical electrooculogram (EOG) signals were recorded
bipolarly with the electrodes positioned 1 cm from the outer canthi of
both eyes, and above and below the left eye. Electrode impedances were
kept below 5 kΩ. After amplification, the EEG and EOG signals were
band-pass filtered between 0.1 and 100 Hz, and digitized at 500 Hz
(Synamps, Neuroscan Inc. El Paso, Texas, US). The EEG signals were
referenced to a linked earlobe reference. Further details of this process
were reported by Shimaoka et al. (2010).

2.2. Data preprocessing

Based on the raw 62-ch EEG data, we obtained the 62-ch EEG
power time series in five frequency bands for each subject, each
condition, and each direction of switching (top to bottom view or vice
versa), as shown in Fig. 4. First, we rejected ocular artifacts in the EEG
using ADJUST (Mognon et al., 2011), by referring to the horizontal and

vertical EOG. Next, we extracted the timings of the participants’ key-
pressing activities as the beginning of key-holdings. We regarded each
key-pressing activity as perceptual switching. In Fig. 4A, red lines
represent the switch from top to bottom view and magenta lines
represent the switch from bottom to top view, respectively, and the
EEG obtained from one electrode is plotted in blue. Then, we divided
each experimental block into several sub-blocks based on the key-
pressing timings and classified the sub-blocks into two types according
to the direction of the switch at the end. Sub-blocks of the same type
were concatenated over the five experimental blocks (Fig. 4B). Here, we
divided the data according to the direction of switch because selective
attention controls the two types of switching in different ways. Finally,
we computed the EEG power in the delta band (0.5–4 Hz), theta band
(4–8 Hz), alpha band (8–13 Hz), beta band (13–30 Hz) and gamma
band (30–50 Hz) by applying the short-time Fourier transform (STFT;
Cohen, 2014) to the EEG obtained from each electrode (Fig. 4D). Here,
the window width and window shift were set to 1000 ms and 100 ms,
respectively. Namely, the EEG obtained from each electrode was
separated into frames of 1000 ms, which overlapped by 900 ms, and
the Fast Fourier Transform (FFT) was then applied to each frame to
obtain the band-specific power (Fig. 4C). We required the EEG power
as a continuous time function for our analysis, so we interpolated the
EEG power by spline smoothing.

2.3. Point process modeling of perceptual switching

We explore the relationship between perceptual switching and
online brain activity, where we are particularly interested in whether
online oscillatory activity (e.g., alpha) have excitatory or inhibitory
effects on perceptual switching. We address this problem by a
statistical modeling approach. Namely, we consider the data as an
output from a stochastic data generation process and construct
statistical models of this process in a data-driven manner. Perceptual
switching is represented as key-pressing time series in our data, which
is regarded as a series of events on the time axis (Fig. 4A). In statistics
and probability theory, such a series of events over time is described as
a point process (Daley and Vere-Jones, 2003), which is a type of
stochastic process. Intuitively, the probability of event occurrence is
specified by a point process. Point process modeling is usually applied
to neuronal firings (Truccolo et al., 2005), earthquakes (Ogata, 1999),
and other series of events. For example, sensory information (Pillow
et al., 2008) or functional connectivity (Stevenson et al., 2012) can be
inferred from multi-neuron spiking data using point process models. In
addition, point process models enable to assess the influence of a
concurrent time series on the occurrence of events (Ogata et al., 1982).
In this study, we evaluate the excitatory or inhibitory effects of online
brain activity on perceptual switching by fitting point process models to
our data.

First, we describe the general framework used for point process
modeling (Daley and Vere-Jones, 2003). Suppose that events have
occurred at time points t t t t T,…, (0 ≤ < ⋯ < ≤ )n n1 1 during time
interval T[0, ]. A point process model is specified by a function on

T[0, ] called the intensity function: λ t( ). Intuitively, the value λ t( ) of the
intensity function at time t represents the rate of event occurrence
around time t (Fig. 5 (a)). Mathematically, the probability of an
event occurring in time interval t t t[ , + d ) is given by

λ t t λ t t1 − exp(− ( )d ) ≈ ( )d , where td is an infinitesimal time length.
We investigate the data generation process underlying the series of
events by constructing a parametric model of the intensity function
λ t θ( ) and estimating the unknown parameter θ from the data.

In this study, we describe perceptual switching by a point process
model. Our data comprise the key-pressing timings and the concurrent
EEG power time series (Fig. 4). We divided the data according to the
direction of switch, so we use different intensity functions for each
direction of switch: one is for switch from the top to bottom view
λ t( )t b( → ) and the other is for switch from the bottom to top view λ t( )b t( → )

Fig. 2. Blocking scheme used in the experiment. Participants received the four
conditions (neutral, top biasing, bottom biasing, and self-paced) in a mixed randomized
order. Each experimental block lasted 3 min and five blocks were assigned to each
condition.

Fig. 3. Locations of the 62 electrodes, which were placed according to the international
10-10 placement system.

T. Matsuda et al. NeuroImage 152 (2017) 50–59

52



www.manaraa.com

(Fig. 6). The parametric model developed for these intensity functions
includes two effects: the effect of online brain activity and the refractory
effect, each of which is explained in the following. For simplicity, we do
not distinguish between λ t( )t b( → ) and λ t( )b t( → ) in the remainder of this
subsection.

In general, suppose that we observe a concurrent time series x(t)
and a series of events. To evaluate the influence of x(t) on event
occurrence, the following model of the intensity function is useful:

λ t θ θ θ x t( ) = exp ( + ( )).0 1 (1)

The term θ x t( )1 in (1) represents the contribution of x(t) to event
occurrence. When θ θ> 0( < 0)1 1 , the probability of event occurrence
becomes higher when x(t) is larger (smaller). In other words, x(t) has
an excitatory effect if θ > 01 and an inhibitory effect if θ < 01 ,
respectively. When θ = 01 , x(t) makes no contribution to event occur-
rence. Therefore, by taking x(t) as the EEG power in (1), we can include
the effect of online brain activity on perceptual switching.

In practice, the probability of event occurrence often depends on
the duration from the last event. For example, aftershocks tend to
repeat after a major earthquake (Ogata, 1999). In contrast, neurons
cannot fire immediately after the last firing and this property is called
refractoriness (Citi et al., 2014). Borsellino et al. (1972) reported that
perceptual switching also has the refractory property and the distribu-
tion of the intervals between perceptual switching can be approximated
well by the gamma distribution. In point process modeling, such an
interaction between events is expressed by making the intensity
function conditional on the history Ht of the series of events, where
Ht represents the set of event timings in the interval t[0, ). For example,
consider a conditional intensity function of the following form:

λ t H f t t
F t t

( | ) = ( − *)
1 − ( − *)

,t
(2)

where t* is the time of the last event before time t (if there are no events
before t, then t* = 0), F(s) is a probability distribution function, and

Fig. 4. Procedure employed for data preprocessing. Here, we show how to extract the EEG power time series on one electrode for switch from top to bottom view. A: Original data. The
EEG obtained from one electrode is plotted in blue and key-pressing timings are shown in red (switch from top to bottom view) and magenta (switch from bottom to top view). The EEG
is divided into sub-blocks based on key-pressing timings. B: Extracted EEG time series for switch from top to bottom view. Sub-blocks are concatenated. C: Schematic of the short-time
Fourier transform. Red arrows indicate the sliding windows. D: EEG power in five frequency bands.

Fig. 5. (a) Relationship between the intensity function λ t( ) (blue) and the series of

events t t,…, n1 (red). A larger value λ t( ) of the intensity function at time t leads to a higher

probability of event occurrence around time t. (b) The Weibull-type intensity function (4)
with θ θ= 1, = 0.40 1 (blue) and the series of events (red). Here, the first event occurred at

t = 01 . By definition (4), the intensity drops to zero immediately after each event, thereby

preventing very short intervals between events (cf. (a)).

Fig. 6. Schematic of the point process modeling of perceptual switching. Here, we focus
on the interval t t t[ , + d ), where td is an infinitesimal time length. Four transition

patterns of the Necker cube interpretation are shown by arrows. Curved arrows represent
the case where no perceptual switching occurs, whereas straight arrows represent the
case where one perceptual switching occurs. The possibility of more than one perceptual
switching within the infinitesimal interval t t t[ , + d ) is negligible. The expressions on each

arrow represent the transition probabilities. Therefore, if the top view is perceived at time
t, then the probability that the top view is still perceived at time t t+ d is

λ t t λ t texp(− ( )d ) ≈ 1 − ( )dt b t b( → ) ( → ) and the probability that the interpretation is changed

to the bottom view at time t t+ d is λ t t( )dt b( → ) . If the bottom view is perceived at time t,

then λ t( )b t( → ) appears instead of λ t( )t b( → ) .
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f s F s( ) = ′( ) is the corresponding probability density function. The
point process with intensity function (2) is called renewal process. In a
renewal process (2), the intervals between events s t t= − ( > 0)i i i+1 are
independent and identically distributed with a probability distribution
function F(s). Thus, the results reported by Borsellino et al. (1972)
imply that the renewal process with the gamma distribution as the
interval distribution describes perceptual switching well. However, the
corresponding intensity function (2) is computationally inconvenient.
Therefore, we instead consider the Weibull dislsetribution

⎛
⎝⎜

⎞
⎠⎟p s θ θ θ s

θ
θ θ s( ∣ ) = exp + log − 1

+ 1
exp ( + ( + 1) log ) ,0 1

1
0 1

(3)

which is commonly used in survival analysis (Kalbfleisch and Prentice,
2002). As shown in Fig. 7, the Weibull distribution has a similar shape
to the gamma distribution but yields a more tractable form of the
conditional intensity function (2):

λ t H θ θ θ t t( , ) = exp ( + log ( − *)),t 0 1 (4)

which leads to a concave log-likelihood as explained in the next
subsection. If θ > 01 , the intensity λ t H θ( , )t increases with the time
from the last event, thereby resulting in refractoriness (Fig. 5 (b)). We
confirmed that the fit of the Weibull distribution to the intervals
between perceptual switchings was not worse than the gamma dis-
tribution. In the following, we refer to the point process model with the
conditional intensity function (4) as Weibull-type model.

In summary, by merging models (1) and (4), we obtain the
conditional intensity function:

λ t H θ θ θ t t θ x t( , ) = exp ( + log ( − *) + ( )).t 0 1 2 (5)

This model enables to evaluate the effect of online brain activity while
accounting for the refractory effect. By testing the hypothesis that
θ = 02 , we can assess the significance of the effect of x(t). Note that the
model (5) reduces to the Weibull-type model (4) when θ = 02 . In the
following, we refer to the point process model with the conditional
intensity function (5) as the online activity regression model, because
it indicates the contribution of online brain activity to the occurrence of
perceptual switching.

After data-preprocessing (Section 2.2), we obtained the 62-ch EEG
power time series in five frequency bands. Let the EEG power obtained
from the i-th electrode in the j-th frequency band be x t( )i j, , where
j = 1, 2, 3, 4, 5 represent the delta, theta, alpha, beta, and gamma
bands, respectively. Then, we have (62 × 5 = ) 310 online activity
regression models

λ t H θ θ θ t t

θ x t i j

( , ) = exp ( + log ( − *)

+ ( )) ( = 1,…,62; = 1,…,5).
i j t

i j i j

i j
i j

, 0
( , )

1
( , )

2
( , )

, (6)

By fitting these models to the data, we identify the scalp location and
frequency band that contribute significantly to perceptual switching.
This process employ likelihood ratio testing with correction for multi-
ple comparisons, as explained in the next subsection.

Due to the inevitable time lag between perceptual switching and key
pressing, it may be inappropriate to incorporate the EEG power x t( )i j,
at time t into the value of the intensity function λ t H θ( , )i j t, at time t in
(6). Therefore, we checked whether the results were altered by
replacing x t( )i j, in (6) with x t t( − Δ )i j, , where tΔ is 0.5 s. The same tΔ
was used by Struber and Herrmann (2002). The results changed little,
so we hereafter use (6) without time lag.

2.4. Likelihood ratio testing of point process models

To identify the part of the brain and frequency band with significant
effects on perceptual switching, we test the hypothesis that θ = 0i j

2
( , ) in

(6) by likelihood ratio testing with correction for multiple comparisons.
First, we fit the Weibull-type model (4) and online activity regres-

sion models (6) to the experimental data. In general, the log-likelihood
of the point process model with conditional intensity function λ t H θ( , )t
is given by

∫ ∑L θ λ t H θ t λ t H θlog ( ) = − ( ∣ , )d + log ( ∣ , ),
T

t
k

n

k t
0 =1 (7)

where t t< ⋯ < n1 are event times and T[0, ] is the observation interval
(Daley and Vere-Jones, 2003). We estimate the parameter θ by
maximizing the log-likelihood (7) using numerical optimization. Note
that the log-likelihood (7) becomes concave for the Weibull-type model
(4) and online activity regression models (6). We obtain the maximum
likelihood estimates using the Newton method.

Next, we test the hypothesis that θ = 0i j
2
( , ) . The online activity

regression models (6) reduce to the Weibull-type model (4) when
θ = 0i j

2
( , ) , so the hypothesis that θ = 0i j

2
( , ) can be tested by likelihood

ratio testing for nested models. Let L θ( ) and L θ( )i j
i j

,
( , )

be the likelihood

functions evaluated at the maximum likelihood estimates θ and θ i j( , )
of

the Weibull-type model (4) and online activity regression models (6),
respectively. Then, the likelihood ratio (LR) statistic is defined as

L θ
L θ

LR = 2 log
( )
( )

.i j
i j

i j

,
,

( , )

(8)

If θ = 0i j
2
( , ) , LRi j, asymptotically follows the chi-squared distribution

with one degree of freedom. Now, it should be noted that we consider
each subject, each condition, and each direction of switch separately.
For the s-th subject under the c-th condition, let s cLR ( , )i j

t b
,

( → ) and

s cLR ( , )i j
b t
,

( → ) be the likelihood ratio statistics (8) for switch from top to
bottom view and switch from bottom to top view, respectively. Here,
c = 1, 2, 3 represent neutral, top biasing, and bottom biasing condi-
tions, respectively. Thus, the p-values (without correction for multiple
comparisons) of the null hypothesis that θ = 0i j

2
( , ) in (6) for each

condition and each direction of switch are calculated as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑p c χ s c( ) = Pr (16) > LR ( , ) ,i j

t b

s
i j
t b

,
( → ) 2

=1

16

,
( → )

(9)

and

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑p c χ s c( ) = Pr (16) > LR ( , ) .i j

b t

s
i j
b t

,
( → ) 2

=1

16

,
( → )

(10)

Finally, because we are simultaneously testing 310 hypotheses
θ = 0i j

2
( , ) with i = 1,…,62 and j = 1,…,5, we correct for multiple

comparisons using the Bonferroni correction. Namely, the original p-
value is multiplied by the total number of null hypotheses 310.

Fig. 7. Comparison of the probability density functions of the Weibull distribution (red)
and the gamma distribution (blue). The unit of s is seconds. In the Weibull distribution,
the parameters are set to θ θ= 1, = 0.40 1 . In the gamma distribution, the parameters are

set to make the mean and variance equal to those in the Weibull distribution.
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Therefore, the p-values (with correction for multiple comparisons) of
the null hypothesis θ = 0i j

2
( , ) are calculated as

p c p c( ) = 310 ( ),∼
i j

t b
i j

t b
,
( → )

,
( → )

(11)

and

p c p c( ) = 310 ( ).∼
i j

b t
i j

b t
,
( → )

,
( → )

(12)

Based on these p-values, the electrodes and frequency bands with
significant effects on perceptual switching are identified for each
condition and each direction of switch.

All of the EEG preprocessing steps and statistical analyses were
performed using custom-written MATLAB (2013a) code. To visualize
the results, we used the function topoplot in EEGLAB (Delorme and
Makeig, 2007).

3. Results

As discussed by Shimaoka et al. (2010), under both biasing
conditions, the duration length of the attended interpretation was
significantly longer than that of the non-attended interpretation, which
agrees with the results obtained by Meng and Tong (2004). Therefore,
the participants actually viewed the Necker cube with top-down
selective attention.

3.1. Fitting of the Weibull-type models

Before investigating the effects of online brain activity on percep-
tual switching, we fitted the Weibull-type model (4) to the key-pressing
data. Fig. 8 presents a histogram of the perceived bottom view
durations and the probability density function of the fitted Weibull
distribution (3) for one subject under the neutral condition. Here, the
estimated parameter θ θ( , )0 1 was (−1.11, 0.45) and the mean of the fitted
Weibull distribution was 2.53 s. In addition, the p-value of the null
hypothesis that θ = 01 was 1.53 × 10−7 according to the likelihood ratio
testing. Similar results were obtained for other participants, conditions,
and direction of switch. As θ > 01 , perceptual switching does not follow
the previous switching immediately (Fig. 5(b)). Thus, perceptual
switching exhibits refractory behavior, in a similar manner to the
neuronal firings (Truccolo et al., 2005).

We tested for differences in the Weibull distributions across
conditions and directions of switch. Namely, we compared six types
of perceptual switching corresponding to the three conditions and two
directions of switch. For all 15 paired comparisons, the null hypotheses
that θ θ( , )0 1 is common were rejected with p < 1.7 × 10−15. Therefore,
the Weibull distributions of the duration lengths vary among condi-

tions and directions of switch, thereby confirming the findings obtained
by Meng and Tong (2004) in another way.

3.2. Fitting of online activity regression models

Next, we fitted online activity regression models (6) to the experi-
mental data. By testing the hypothesis that θ = 0i j

2
( , ) in (6) by likelihood

ratio testing with correction for multiple comparisons, we identified the
part of the brain and frequency band with significant effects on
perceptual switching. Among the five frequency bands considered
(delta, theta, alpha, beta, and gamma), significant results were obtained
for the alpha band. We present the results for the alpha band (j=3) in
the following.

Fig. 9 maps the likelihood ratio statistic (8) summed over 16
participants for each condition and each direction of switch. The upper
row shows the mapping for switch from top to bottom view

s c∑ LR ( , )s i
t b
3

( → ) and the lower row shows the mapping for switch from

bottom to top view s c∑ LR ( , )s i
b t
3

( → ) , respectively. From the relation (9)
and (11) between the likelihood ratio statistics and the Bonferroni-
corrected p-values, we find that χLR > ( ) (1 − 0.05/310) = 44.616

2 −1 and
LR > 100 correspond to p < 0.05 and p χ< 310(1 − (100)) = 1.1 × 1016

2 −11,
respectively, where χ16

2 denotes the distribution function of the chi-
squared distribution with 16 degrees of freedom. Therefore, online
alpha activity in the green, yellow or red regions have highly significant
effects on perceptual switchings.

According to Fig. 9, six pairs of the condition and the direction of
switch are classified into two types. The significance of online alpha
activity is low for the first type, which includes the switch from top to
bottom view under the neutral and top-view biasing conditions as well
as the switch from bottom to top view under the bottom-view biasing
condition. However, online occipital alpha activity has highly signifi-
cant effects for the second type, which includes the switch from top to
bottom view under the neutral and top-view biasing conditions as well
as the switch from bottom to top view under the bottom-view biasing
condition. This clear contrast is interesting. Then, we investigate
whether the effect of online occipital alpha activity is excitatory

(θ > 0i
2
( ,3)

) or inhibitory (θ < 0i
2
( ,3)

). Fig. 10 maps the number of

participants with negative θ i
2
( ,3)

for each condition and each direction
of switch. The online alpha activity in the red regions has an inhibitory
effect on perceptual switchings for most of the participants (more than
12 out of 16). Therefore, for the second type of switchings discussed
above, it can be seen that online occipital alpha activity has an
inhibitory effect on perceptual switchings. In summary, online occipital
alpha activity has a highly significant inhibitory effect on the switch
from top to bottom view under the neutral and top-view biasing
conditions as well as the switch from bottom to top view under the
bottom-view biasing condition.

The results given above are naturally interpreted as follows. Under
the top- and bottom-view biasing conditions, the participants attempt
to maintain a fixed perception of the Necker cube. For example, under
the top view biasing condition, perceptual switching from the bottom to
top view is “desired,” whereas the opposite switch is “undesired.” Thus,
we conclude that the switch to the “undesired” view is suppressed by
online occipital alpha activity.

Although the participants did not watch the Necker cube with
selective attention under the neutral condition, we found a strong
difference between the two directions of switch. Combined with the
above conclusion, one possible explanation is as follows: once the
perceptual switching to the top view occurs, the participants prefer to
maintain this interpretation because the top view is perceived more
naturally than the bottom view. In other words, the top view is
implicitly “desired” under the neutral condition. Our point process
modeling approach can capture such implicit bias in addition to explicit
selective attention.

As a control for motor activity, we conducted a similar analysis on
Fig. 8. Histogram of the perceived bottom view durations (blue) and the fitted Weibull
distribution (3) (red) for one subject under the neutral condition.

T. Matsuda et al. NeuroImage 152 (2017) 50–59

55



www.manaraa.com

the self-paced key pressing condition. Under this condition, the
participants pressed the keys at their own pace without watching the
Necker cube. Therefore, we did not divide the data into sub-blocks as in
Fig. 4B. We concatenated five experimental blocks into one for each
subject and applied the same analysis described above. Fig. 11 maps
the likelihood ratio statistics for each frequency band and Fig. 12 maps

the number of participants with negative θ i j
2
( , )

for each frequency band.
Online alpha activity does not have significant effects on key-pressing
events. In contrast, the parietal beta activity seems to have a significant
effect. Among 16 participants, nine showed high significance of the

parietal beta activity. The fitted parameter θ i j
2
( , )

was negative for all
these participants. Therefore, the parietal beta activity appears to have
inhibitory effects on key-pressing events. This result is plausible,
because key-pressing events cause event-related desynchronization,

which results in decreased beta activity in the motor cortex
(Pfurtscheller and Lopes da Silva, 1999).

4. Discussion

In this study, we proposed a point process modeling approach for
studying the effects of online brain activity on perceptual switching and
analyzed experimental data regarding selective attention in multistable
perception. We developed online activity regression models (6), which
enable to determine whether online brain activity has excitatory or
inhibitory effects on perceptual switching. By fitting online activity
regression models to the data and applying the likelihood ratio testing
with correction for multiple comparisons, we determined the part of
the brain and frequency band with significant effects on perceptual

Fig. 9. Mapping of the likelihood ratio statistics for the alpha band (upper row: s c∑ LR ( , )s i
t b

=1
16

,3
( → ) , lower row: s c∑ LR ( , )s i

b t
=1

16
,3

( → ) ), where each s cLR ( , )i j, is defined as (8). The likelihood

ratio statistics exceeding 100 corresponds to p < 1.1 × 10−11, so the online alpha activity in the green, yellow or red regions have highly significant effects on perceptual switchings.

Fig. 10. Mapping of the number of participants with θ < 0i
2
( ,3)

at each electrode for each condition and each direction of switch. Note that we analyzed 16 participants in total. The

online alpha activity in the red regions has an inhibitory effect on perceptual switchings, the significance of which can be evaluated by Fig. 9.
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switching. As a result, we found that online occipital alpha activity
suppresses perceptual switching to the non-attended interpretation.

4.1. Attentional control over perceptual switching

Our results demonstrate that online occipital alpha activity main-
tains the attended interpretation. This finding is consistent with
previous findings that alpha activity decreases around the time of
perceptual switching (Isoglu-Alkac et al., 2000; Isoglu-Alkac and
Struber, 2006; Struber and Herrmann, 2002). Such a relationship
between occipital alpha activity and visual attention has been already
reported. For example, when covert visual attention is directed to the
left or right of the visual field, occipital alpha activity is suppressed in
the hemisphere contralateral to the attended side (Thut et al., 2006;
Worden et al., 2000). Our results suggest that occipital alpha activity
also stabilizes the attended interpretation in multistable perception;

these results also support the hypothesis of Jensen and Mazaheri
(2002) that alpha activity mediates the inhibition of information
processing, because the participants in the present study tried to
maintain the attended interpretation by inhibiting an alternative
interpretation. Jensen et al. (2010) also reported that parietal alpha
activity increases with memory load during retention.

Online occipital alpha activity holds the attended interpretation
much more strongly than the non-attended interpretation. The online
activity regression models (6) evaluate the effect of online brain activity
(expressed by the parameter θ2) while accounting for the change in the
baseline switching rates (expressed by the parameter θ0) across
conditions separately. Therefore, suppression of perceptual switching
to the non-attended interpretation is mediated not only by the decrease
in the baseline switching rate θ0, as found by Meng and Tong (2004),
but also by the significant change of θ2 to negative. In other words, top-
down processes related to the selective attention during the Necker

Fig. 11. Mapping of the likelihood ratio statistics s∑ LR ( )s i j=1
16

, for each frequency band under the self-paced key pressing condition.

Fig. 12. Mapping of the number of participants with θ < 0i j
2
( , )

at each electrode for each frequency band under the self-paced key pressing condition. Note that we analyzed 16

participants in total.
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cube perception, which are controlled by the prefrontal cortex, are
considered to interact with bottom-up information processing via the
modulation of online alpha activity. Unlike previous studies (de Graaf
et al., 2011; Windmann et al., 2006), we found no significant effects of
frontal activity on perceptual switching, possibly because online
activity regression models (6) are insensitive to instantaneous activity
changes, i.e., the frontal cortex may become active only around the time
of perceptual switching.

4.2. Advantages of the point process modeling approach

In the present study, we described perceptual switching using
online activity regression models (6). Several theoretical models of
perceptual switching have already been proposed. For example, Haken
(1983) described multistable perception as a dynamical system with
several attractors, whereas Braun and Mattia (2010) described percep-
tual switching using a noise-driven attractor dynamics model where
each competing interpretation corresponds to one attractor of the
dynamical system and noise fluctuations in the dynamics drive the
stochastic transitions from one attractor to another. These models
provide an intuitive understanding of multistable perception, but they
are phenomenological in nature, thereby precluding any quantitative
analysis of experimental behavioral and neurophysiological data. In
contrast, our point process modeling approach allows quantitative
evaluations of the effects of online brain activity.

The part of the brain that actually governs perceptual switching
remains unknown. It is considered that manipulative experiments such
as transcranial magnetic stimulation (TMS) are useful for investigating
causality. In terms of multistable perception, experimental results
obtained using TMS (de Graaf et al., 2011) and lesions (Windmann
et al., 2006) suggest a causal role of the prefrontal cortex. Namely, the
prefrontal cortex is essential for selecting and intentionally switching
between competing interpretations. Windmann et al. (2006) also noted
that the prefrontal cortex may not be necessary for maintaining
conscious representations of continuously perceived visual objects.
We suggest that online activity regression models (6) may be useful for
elucidating causal relationships between online brain activity and
perceptual switching. Specifically, by replacing x(t) with x t t( − Δ ) in
(6), we can evaluate the effect of online brain activity on perceptual
switching with a time lag tΔ . We confirmed that this modification
slightly altered the results given above when tΔ was 0.5 s. This result
may suggest a causal role of online occipital alpha activity in multi-
stable perception. In addition, an analysis that incorporates a time lag
may allow the prediction of perceptual switching from online brain
activity. The probability of perceptual switching around time t t+ Δ is
obtained at time t.

Spontaneous brain activity has recently been shown to be important
for various types of information processing (Arieli et al., 1996; Fiser
et al., 2004; Laird et al., 2011; Luczak et al., 2009). Many neuroimaging
studies suggest that spontaneous oscillatory activity such as alpha and
gamma are crucial for sensory processing including visual perception
(Busch et al., 2009; Dougherty et al., 2015; Freyer et al., 2009; Ruhnau
et al., 2014). However, conventional analyses of cognitive events such
as perceptual switching have mainly focused on the brain activity only
around the time of events such as evoked and induced activity. In
contrast, our point process modeling approach can investigate the
dynamic relationship between cognitive events and online brain
activity, in conjunction with brain signals such as EEG and fMRI.
Therefore, our method has many potential applications in future
studies.
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